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Inertial range scaling of intense events in turbulence
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The inertial range scaling exponents {(p) for the velocity difference moments ([u(x+r)—u(x)]?) in high
Reynolds number turbulence are considered for large values of p. Two different models are considered. In the
first the asymptotic behavior of {(p) is 1.440p'?2, and in the second it is (p/9). It is shown that these two
models are indistinguishable experimentally for p <100, but that the underlying dynamical assumption about
the most intense turbulent events in the two models is essentially different.
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The velocity structure functions ([u(x+r)—u(x)}?) in
the inertial range of high Reynolds number incompressible
turbulence are usually assumed to scale as r*®), In the 1941
Kolmogorov theory [13], the probability density function
(PDF) for [u(x+r)—u(x)] is self-similar, and the scaling
exponents {(p)=p/3. Experimentally and in direct numeri-
cal simulations, these scaling exponents increase less rapidly
with p. This problem of the internal intermittency of turbu-
lent flows has generated a large literature which I have re-
cently reviewed [1]. There are many models for the depen-
dence of {(p) on p. In this note I concentrate on the
behavior of {(p) for large values of p. I make the strong
assumption that all high order moments exist, and that power
law scaling is applicable to them. These high order moments
then describe the scaling of the most intense inertial range
events. I emphasize the physical assumptions underlying
contrasting models for the scaling behavior of these intense
events.

It is usually assumed that inertial range scaling is gov-
erned by the Kolmogorov refined similarity hypothesis [2]
which states that

{p)=(p/3)— n(p/3), »
where u(p) is defined by
(eP)=constX r~#P) )

and &, is the local dissipation averaged over an inertial range
distance r. In this note, I will assume the refined similarity
hypothesis to apply.

In a recent paper Novikov [3] has applied the theory of
infinitely divisible distributions to the scaling properties of
€, , making essential use of the fact that &, is a non-negative
random variable. In particular, he focuses attention on a pa-
rameter & defined by

h=lim[u(p)/p]l. 3)

p—®

He emphasizes that if A<<1, then there is a gap in the PDF
for the ratio variable (&, /gy,), with b<<1. He points out that
a recent model by She and Leveque [4] gives A=2/3, and
thus implies a substantial gap in this PDF. He suggests that
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this gap is unphysical and in contradiction to experiment. In
the present note, I consider the physical implications of the
value of 4. I suggest that there is an interesting unresolved
question of principle, but that the question is unlikely to be
resolved by experiment.

Using Eq. (1), I first note that refined similarity implies
that

(1=h)=3 Lim[{(p)/p)], 4

pooo

so that if #=1, the exponents {(p) increase less rapidly than
linearly for large p. When £ =1, the dominant linear term in
u(p) for large p exactly cancels the (p/3) in Eq. (1). In this
case, the subdominant term in u(p) determines the asymp-
totic behavior of {(p). In terms of the usual multifractal
formalism for the dissipation fluctuations [5], the scaling
properties of &, are described in terms of a function f(a)
where a extends over a range from a, corresponding to the
most intense events to a,,, corresponding to the least in-
tense events. If A=1, then ap;;=0, while if £<1, then
Ain=>0.

A reasonable choice for the asymptotic behavior of {(p)
is p”, with y<1, but how can the exponent y be estimated?
One possibility is suggested by a dynamical model for a
passive scalar advected by a white noise Gaussian velocity
field with a Kolmogorov spatial spectrum. This has been
studied by Kraichnan [6], and the results have recently been
confirmed and extended by Kraichnan, Yakhot, and Chen [7].
In this model system, the scaling exponents {(p) are propor-
tional to p'/? for large p. There is no good reason to assume
that this asymptotic p'/? behavior will be valid for the non-
linear dynamics of the Navier-Stokes equations, but it is one
possibility.

To be more specific, consider a family of analytical mod-
els discussed by Novikov as Eq. (18) in Ref. [3] which con-
tains three parameters «, 7y, and o. (I use the symbol y
instead of Novikov’s a to avoid confusion with the usual
multifractal formalism.) If A= 1, then «= 1. Following Kra-
ichnan’s passive scalar model, I take y=1/2. Novikov’s Eq.
(18) for u(p), using Eq. (1), then gives

) ={[1+(po3) -1} {(1+0)>=1}.  (5)

To choose the parameter o, note that {(6)=2—u(2)=2—u,
where w is the putatively universal exponent defined by the
spectrum of dissipation fluctuations. I want to compare Eq.
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TABLE 1. Comparison of the scaling exponents {(p) from the
She-Leveque model of Eq. (6) and the present model, Eq. (5) with
o0=0.9126.

Order p She-Leveque Eq. (5)
2 0.696 0.700
3 1.000 1.000
4 1.280 1.277
6 1.778 1.778
8 2.211 2.227
10 2.593 2.639
20 4.088 4.339
40 6.435 6.864
60 8.666 8.846
80 10.889 10.532
100 13.111 12.025
200 24.222 17.923

(5) with the model of She and Leveque, which gives
©#=2/9, in agreement with most experiments [8]. It is easily
verified that Eq. (5) gives {(6)=1.7778 if the parameter
0=0.9126. In Eq. (5), the subscript N denotes any name that
the reader would like to use.

In particular, compare Eq. (5) to the model proposed by
She and Leveque in Ref. [4] which gives

{su(p)=(p/9)+2[1—(2/3)""°]. (6)

Equations (5) and (6) are constructed to give {(3)=1, as
required by the Navier-Stokes equations, and discussed, for
example, in Ref. [1]. The choice of the parameter
0=0.9126 forces the two models to also agree for
{(6)=2—u=16/9. They behave very differently for large
p, however, with {g;(p) asymptotically approaching p/9,
while {y(p) asymptotically approaches 1.440p'2. I had ex-
pected that the two models would differ markedly in their
functional form over a reasonable range of p. The predic-
tions of the two models are compared in Table I for a range
of p extending from 2 to 200. This gives the surprising result
that the difference between the two models is negligible for
p<100 despite the fact that their asymptotic behavior for
large p is very different. It is totally unfeasible to distinguish
between the two models experimentally at the level of scal-
ing exponents for the moments.

What is the essential physical difference between the two
models, and where does the gap in the She-Leveque model
originate? As shown in Ref. [4], the essential feature is the
dependence of the most intense events on scale size. This is
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described by a quantity ) which scales as 27 in the

She-Leveque model. In this model, 8£°°)= U 7(r), where U
is a large scale velocity, and 7(r) is the Kolmogorov time
scale for an eddy of size r. This leads directly to #=2/3 in
Novikov’s language. To obtain A=1, it is necessary to as-
sume that sﬁw) scales as U3/r. In other words, if the most
intense events are to give =1, then the underlying physics
of these events should have nothing to do with 1941 Kol-
mogorov scaling. (Recall that I have assumed that all mo-
ments exist, and that they behave as power laws in r. It is
reasonable to worry if this could occur in the absence of
residual effects of 1941 Kolmogorov scaling.) On the other
hand, if A=2/3 as in She-Leveque, then a residual effect of
1941 Kolmogorov scaling is assumed present even for the
most intense events. Thus it is not surprising that 2=2/3
leads to some remnant of the linear scaling of {(p) with p at
large p, but that =1 eliminates the linear term completely.
It is also not surprising that A#=2/3 leads to a gap in an
underlying PDF since scaling ideas are used to exclude the
most intense events allowed by the underlying probabilistic
description. At the present time I do not know whether either
of these two pictures is physically correct, but it is clear that
they differ in an underlying assumption about the dynamics
of the most intense events, and not just in the formal struc-
ture of the probabilistic description. Despite this basis physi-
cal difference, however, the two models cannot be distin-
guished experimentally at the level of scaling exponents.
Note added. Since the first version of this paper was writ-
ten, some new information has become available which per-
tains to the above discussion, but does not resolve the
underlying controversy. Ruiz Chavarria ef al. [9] have ex-
perimentally studied the hierarchy of moments underlying
the She-Leveque model, and have found strong support for
the underlying hierarchical structure. Chen and Cao [10]
have pointed out, however, that the hierarchical model of She
and Leveque does not exclude the possibility that A=1.
Pedrizzetti et al. [11] have measured the PDF of the ratio
variable g, /g, with <1, and have found no evidence for a
gap. This suggests that 2= 1, but She [12] cautions that the
scaling exponents for the ratio variable and for the averaged
dissipation &, need not be the same. The question raised in
this paper remains unresolved, and is of continued interest.
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